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In the numerical investigation of multidimensional gas—dynamical flow, it is often im
portant (see [1, 21) that the difference scheme used not disrupt a one-dimensional property
of a flow, either as a whole or in separate regions. -The question of the conservation of
various types of flow symmetry in numerical modelling has been investigated in several
articles for certain difference—Scheme classes (see, for example, [3—71). In some cases it
is convenient to construct schemes with the required property by using an appropriate co
ordinate system. However this approach to the development of such schemes is not trivial [6).

We note that the conservation of a one_dimensiOnal property in various coordinate sys
tems is practically never considered for methods using irregular meshes [8—15).

We describe a difference scheme of the u’Dirichlet-.Particle” type in cylindrical coordi
nates which conserves plane, cylindrical, and spherical symmetry for gas—dynamical flow. This
scheme is completely conservative.

Conservation of the 0~e_dimensiOUality of a flow is attained by a ~pecial volume formula.

1. We consider first the gas—dynamical equations in rectangular coordinates (x, y) and
the corresponding difference scheme describej in [14] in the rectangle E — {x~jn<X<xczin<y<
Ymax). For definiteness we assume that (W, n)I~E=O~ on the whole boundary, where ~ is the
external normal to the boundary ~E. We also assume that, initially, all quantities depend
only on x, i.e., p(x, y)jt—e — p(x), p(x, y)It—o p(x), etc.; consistency requirements of
initial and boundary conditions imply that Wy(x)It.o — 0.

The differential problem with these initial and boundary conditions has a solution of
the form p(x, y, t) — p(x, t), p(x, y, t) p(x, t) etc., Wy(x, t) — 0, which we call a one—
dimensional solution in x.

Consider the following difference scheme from [14]:
dp 1 — dWx
~ p—~---+GRADxP=0, (1)

dWy ds -.

p~ +GRADyP=0, p~~~+PDIVW’=O,

here Wx (~, e~) and Wy — (~, y), and the unit basis vectors e and ~y are in the directions
of the x— and y—axes, respectively. The difference operators are defined as follows:

(DIV W)1= — ~ (__-i-~ Wx,1+_~~.~!_ (2)
kEtU~ Ox,.

(GRAD~P)~~” ~
,1~JjJ Ox1

1 V OVk
(GRAD~P)i ~ L.~ —~-—Pk.

Vi hEW lJ~j

The volume Vj is chosen to be the area of a Dirichiet cell:

V =0.5 ~ (x,1+I,2—f—Xh—1/2) (yk+~/2—Yh—1/2). (3)
*Eill~

Direct differentiation yields the following formulas: ______
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2. We next consider a difference scheme in cylindrical coordinates:

-~f--+---~--D1Vw=o, P+GRADPO (9)

dV/z de —

p —~-+GRAD,p=0, P-~--+pDIVW=O,
-,. -~ -* -~ +

where Wr (W, er) and Wz (W, ez), and the unit basis vectors er and ez are in the direction
of the r— and x—axes, respectively.

The difference operators are determined as in the rectangular case:

(DIV ,~: •(—~- Wrk+~YLWzk),
a~ (10)

I V dVII
(GRADrP), ~

kEPa~ r~

1 V OV~
(GRAD~p),= ~ -~--_ P’~.

k~paj

In the present work, we consider a scheme (9), (10) in which the volume Vi riVi, is
used, where Vi is the area of a Dirichiet cell in the Cr, z)—plane:

= ~(Zk+l,2—z,..1~2).

— ~Paj
Properties of the volume Vi are as follows. Clearly

—~-~- =r~—~--— (i~k), ~~ (11)
OZ,1 OZk

and

0V1. ar~ OV Ol7~ (12)
—a—— =r1--__+V,.and —-—— =r~———.

We prove that

V,~=0. (13)Or1 hPa.

Relations (11) and (12) imply that

~ç. ~V~=r, Or, ~+ ~Pi (14)

and, since

ac’, —

r1

by virtue of (5), it follows from (14) that

8 V V O17~ (15)
~ V~= ~+ ~ (r~—r~)Or1 kpa. Or1

It follows from (4) that (15) can be written as

V~== P1+ (rk—r,)
Or1 ~Pa~ kpa r~—r1

( r— rI~+I,2+rk_t,2 ) = r1 (Z,l+I,2—Zk_I,2) — ~ Tk+I 2+rh_t,2
- kpa kPa

The second term in the last expression in (16) vanishes because the ri ean be taken out from
Under the summation sign, and the last term is equal to —Vi and cancels the first term.

This proves (13), which implies in particular that
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~, ~. , a
= — ~ cse

i.e., there is a formula similar to (6) for Vj. Hence

— ‘5’ ôI~
~Pa~

Using (11) and (12), we rewrite the difference operators (10) as

(I)1VW)1=—~---~ ( _Wr~+P_~1_W’z~) +—~-~--,

~ kPa1 rk Oz~

(GRADrp)”~~ -~--.Pk) _~,

Pa1

(GT~AD2p)1= ——k-- ~
and it follows that -er

(DIV W)=(DIV W)~+Wr~/r~, (GRADrP)i= (18

= (l/r~) (GRADrp)1—pi/ri, (GRAD~p)1= (1/r1) (GRAD~p)~.

Here DIV and GRAD can be obtained from the corresponding operators in (2) by replacing x a~
y by randz, respectively.

3. Here we consider the problem in the rectangle E{O<r<rma~, zmjn<z<zmax}. On the ~

of symmetry, we assume that Wr r=o = 0, and we also assume that Wr rrmax = 0 and Wz zzmax • 0.
If all functions depend only on r at the initial time, and W~~0 0, then the differentjj~
problem has a solution depending only on r. : u

We prove that the difference scheme has an analogous property. In E choose the rectanplr
mesh, uniform with respect to z, with the mesh points (r1, zj): zj = (j — 0.5)hz, hz(z..~—
zmjn)/NZ, O<r~<... rNr. We use the following notation hr~ = 2rL; hri = rj —rj-1, i =2, ...,

Nr; hrNr+L = 2 (rinax _rNr). It follows from (18) and (8) that (DIV W)i~ = (Wrj_~)/(hri + hrj~,~ d
ri, (GRADrp)ij = (1/rj) (pi+iri+i — pj_1r~~1)/(hr~ + hrj+1) — pun, and (GR.AD~p)jj = 0, i.e., ‘~

there is r—one—dimensionality.

To prove that the scheme is one—dimensional with respect to z, we use a rectangular ~g, rorn
uniform with respect to r, and impose the appropriate boundary conditions. Since Wrij — 0,
the expression for DIV in this case coincides with (8) for the same operator with y replaced
by z and the assumption that Wxjj = 0. Hence it follows from Sec. 1 that (DIV ~)ij — Sj.
Since Pij rjjpjj and by virtue of the assumption that nj rj and pij = pj, we concluds
that pu = ~j. It therefore follows from Sec. 1 and the last formula in (18) that (GRADp)j1
Gj. It remains to prove that (GR.ADrP)jj — 0.

Using (17) in (10), we obtain igc

r 1
(GRADrP)ij= -—[ ~ (Pi+—Pi)+ ~ (pi—~—p~) j~v11.

at

The required relation now follows from relations (11), 3Vjj+~/ nj 0, and aVuj—~/ nj — 0.

This proves that our difference scheme conserves the one—dimensionality of gas—dytia.ic1-~
f low with respect to z and r.

4. We now consider the scheme (9), (10) for spherically syumietric flow. In the (r, z)
plane, we introduce a polar mesh, uniform with respect to the angle. The coordinates of the
mesh points are as follows:

r12=R, sin 0. O~= (i—O.5)t~O; (19)

z~1=R, cosO1, i\9=0.&~/N0,

here Rj is the spherical radius of a point; 0 is the angle measured from the z—axis. We II

sume tSat, at the initial time, pjj pj, c~j ~j, pjj pj, Weuj = —cos SjWnj~ + sin Oi~i~
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and WRij = sin OiWrjj + cos 6iW~ij =U~ and that appropriate boundary conditions are its—
osed. We wish to prove that these conditions are satisfied at each instant of time, i.e., that

—cos e, (GRAD- P)ij+SIfl e(GRAD~ p)~~=0, sin øi(GRADrP)i,+ COS 6~ (GRADz P)~~_~ G, (DIV~ (20)

y virtue of our assumptions, the operator GRAD is defined as follows:[ ovii+1 avij_
(GRADrP)i = — Or~1 (P,+i—p,)+ Or11 (Pi-~—-Pi)] /V,,. (21)

[ avij+I 13v1j_t
(GRAD1p)1~= — (P!±rPi)+ ~ /V~.

rots (11) and (19) we conclude that

dr~, ‘~‘ Or,~ I?,+~ sm e1 Or1,

_______ ov~_~ av,1~1

= R,_isine, , =R3÷1sine1Or,~ Or,2 OZ,~ 0z1,

_______ • ov~1

=R,_1 sin 8~dzij dz,1

here Vii = Rjsin €i.Vij Rj sin ei.vj. Hence relations (21) can be written as

(GRADrP)ii= — 1 [ OV~+1 0V11_1 (R~—1(p~_1——p1))] , (22)
~-.;-~;•~ Or11 (R,~1 (p+~_pI) + Or1,

______ _______ evil_I

(GRAD1p),,=— R,V1 0z2, (R~+t(p,÷1p,))+ 0z• (R,_i(p,_i_p,))j

.ence, since pj and R1 are arbitrary, the first relation in (20) is satisfied only if

~• ~ av1,+~ av~_1 OV1i-~ (23)—cose~ =0, —cose1 +sjne —0.
Or,, Oz~, Or,, Oz~, —

~y using the formulas

rk÷l,2=2—’[(z~—z~) (r~÷~ —r2 —z2 )—(zk+I—z,) (r2k_r~ +z~—z~ )]/F,+112,

z~11~ =2- I [(r~—rk) (rtk÷I_r~ +z~, —z2 ) —(rI—rk+!) (r2k—r2 +z~ —z2 ) ]/Fh+jI2,~nd
(24)

= (zk—zt) (rk+1—rl) — (Zk÷I—Z1) (rk—r1)
rots [14), we can prove that

a R +~ sin 8’+i,t—sin øi—I

Or. R,÷1—R cos e~ (R, s~r~ e1—aR1+112 sin ø1+I,2+sin e1_112 (25)- =a

or’. _, R+1 2 COS 81_I/2—COS 61+1/2 (R, cos 6~—aR)+II2 COS øi+l/2+COS 81—ia )
= aOz sin 6, 2

‘here R~+1/2 = (R~ + Rj+L)/2, ~i+i/2 (Oj + °i+~)/2, and a = cos~(~9/2). Applying known
.rigonometrjc relations in (25), we conclude that the first identity in (23) is satisfied.

Relations (22) imply that, to establish the second identity in (20), we need only prove
hat

sin8, +cosø1 =G1,
r~ Oz~ 1 (26)

______ avji_l

__Q2~ e Or1, ~ dz,~

~ use the following formulas, analogous to formulas (25):

cos e— ‘2—cos 61+1/2 ( R sin 6,—aR,+,2 sin~ 6i~! 2 )
=a —Or sin 61

a .~. R,+112 sin 6+1,2—sin Oi_112 (R, ~ øI—a~R,+/2 COS øl+I/2+COS øi~II2 )
- =a-~R. cosø~ 2
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This yields = a(Rj÷i/a/(R~+1 — R~))(R~ — 2’c~R~+1/2sin ~). The second formula in (26)
proved similarly.

We next prove that (DIV ~ = Dj when Wr~~ = sin ej ?TJJ and Wzj~ = cos ~ i.e., ~
is in the direction of the radius vector. From the first formula in (18), we obtain

— I I dc’ dc’,
(DIV W),,= — j (U~—(J1)sjn 9 ~1~ ~ ..1—U,)cos ~ dr (U_1—U )sin 9.-(—

c’, ~ vZ~ —l (27)

(31?
+ (U1_1—LJ,)cos 9+ (sin 9:—i—sin a) &,+

-i

____ dv,,

÷ — (cos O~—cos 91)U.-~--- (sin 91÷~—sin 9,)U +

1 U,
+-~--——(ccs9t+i—cos9)UJ +.~—.

The last term in (27) depends only on j; hence, to prove that (DIV ~)ij = Dj, it is sufficient
to establish that the expression in square brackets depends only on j. Since DIV is a linear
operator, it is sufficient to consider separately the cases Uj = 1, Uk = 0, k~j etc., and
this leads to the following conditions:

ac’11 av~1
sin61± cos9~=D’,

:j

ac’11 ov~,
D2 = —~ sin 9~+ cos @=D2,£/ dr1,_1

D’,+D2 +D~~ =D~ +D~ + (sin 9~-i—sin 91)4

(cos9~_t—cos 9’)+ (sin e~+i—sin 9~)+ (cos 01+1—cos 8)=D4

The first two identities can be obtained from (26) by a translation of the indices with re
spect to j; to prove the last relation, it is sufficient to show that ~ depends only on j.
From (22) we obtain

acli (R,+112—R,_1i2)cos 8i+1/2 /
= ~R, 51fl91+I—xSifl9,+l/2

dr1÷~ R1 sin e1+1—sin e~ 2

ac’1, ~ (R1+,,2—RJ_(,2)sin 91+1/2 / R1.112+R;+112
= cos 9~+i—~ cos 01+1/2dz1÷,1 R1 cos0~+1—cos0~ — 2

and similar formulas hold for aVjj/arj...11 and aVjj/azj_1j. It can now be directly verified
that ~ = 2~Z(Rj+1/2 —Rj...i/a)sin(~e/2) — Dj, which is the required result.

We have proved that all conditions in (20) are satisfied, and so our difference scheme
conserves the spherical symmetry of the flow.

Examples of test problems verifying our theoretical results can be found in [15).

The authors take this opportunity to thank A. A. Samarskii for his interest in this
work, and A. P. Favorskii and V. F. Tishkin for their valuable discussions of our results.
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SECOND—ORDER DIFFERENCE SCH~{E FOR GAS—DYNAMICS EQUATIONS
WITH A CONSISTENT APPROXIMATION OF CONVECTIVE FLOWS

S. I. Tkachenko UDC 519.63

1. Introduction. We investigate a method of solving gas—dynamics problems introduced
in [1, 2], using difference schemes with consistent approximation of convective flow. The
flow is described in Euler variables. Consistency of approximations of flows is, in particu
lar, an element in the construction of completely conservative difference schemes (c.c.d.s.)
and imposes rather stringent restrictions on the form of the difference equations. This
decreases the range of possible improvements in the quality of the corresponding algorithms.
One way of improving c.c.d.s. is to raise the order of approximation of convective flows
while conserving the condition for their consistency. We use this method.

2. Original Equations. In a domain D(x, y)ER2, with x, y rectangular coordinates, we
Consider the following equation system describing nonstationary flow of a compressible heat—
Conducting viscous medium, closed by the equation of state P (y — 1)pe of a perfect gas:

ap/at+div(~v) =0, (1)

ápV/Ot+div(pV®V) —grad P+divd,

Opa/c31-f-div(pe. V) = —P dlv V+div(~ grad a) +R.

Here V(u, v) is the velocity; p is the density; P is the pressure; a is the specific internal
energy; d is the viscous—stress tensor; R is the energy release caused by the action of vis
cosity; y is the adiabatic exponent; x is the thermal conductance; ~ is a direct product
Of vec~ors~

We consider an initial boundary—value problem for (1) in D.
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